E$cient estimation of binary choice models under symmetry

نویسنده

  • Songnian Chen
چکیده

This paper proposes a semiparametric maximum likelihood estimator for both the intercept and slope parameters in a binary choice model under symmetry and index restrictions. The estimator attains the semiparametric e$ciency bound in Cosslett (1987) under the symmetry and independence restrictions. Compared with the estimator of Klein and Spady (1993), which attains the semiparametric e$ciency bound in Chamberlain (1986), and Cosslett (1987) under the independence restriction, we show that there are possible e$ciency gains in estimating the slope parameters by imposing the additional symmetry restriction. A small Monte Carlo study is carried out to illustrate the usefulness of our estimator. ( 2000 Elsevier Science S.A. All rights reserved. JEL classixcation: C31; C34

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semiparametric Estimation of Heteroscedastic Binary Choice Sample Selection Models under Symmetry

Binary choice sample selection models are widely used in applied economics with large crosssectional data where heteroscedaticity is typically a serious concern. Existing parametric and semiparametric estimators for the binary selection equation and the outcome equation in such models su®er from serious drawbacks in the presence of heteroscedasticity of unknown form in the latent errors. In thi...

متن کامل

E$ciency results of MLE and GMM estimation with sampling weights

This paper examines GMM and ML estimation of econometric models and the theory of Hausman tests with sampling weights. Weighted conditional GMM can be more e$cient than weighted conditional MLE, an ine$cient alternative to full information MLE under choice-based sampling, unless regressions have homoscedastic additive disturbances or sampling weights are independent of exogenous variables. GMM ...

متن کامل

Rank estimation of a location parameter in the binary choice model

This paper proposes a rank-based estimator for a location parameter in the binary choice model under a monotonic index and symmetry condition, given an initial Jnconsistent estimator for the slope parameter. The estimator converges at the usual parametric rate. Compared with existing estimators, no nonparametric smoothing is needed here. A small Monte Carlo study illustrates the usefulness of t...

متن کامل

Coarse, e¢ cient decision-making

To achieve e¢ ciency, an agent who uses criteria to make choice decisions should employ the coarse criteria that have a small number of categories. Coarse criteria reduce decision-making cost even though an agent, to maintain the number of choice distinctions, must use more criteria. The most e¢ cient criteria are binary with two categories each; this result holds even if the marginal cost of u...

متن کامل

Probit models: Regression parameter estimation using the ML principle despite misspecification of the correlation structure

In this paper it is shown that using the maximum likelihood ML prin ciple for the estimation of multivariate probit models leads to consistent and normally distributed pseudo maximum likelihood regression parame ter estimators PML estimators even if the true correlation structure of the responses is misspeci ed As a consequence e g the PML estimator of the random e ects probit model may be used...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000